
P1: GTQ

International Journal of Theoretical Physics [ijtp] pp1183-ijtp-485168 April 29, 2004 1:11 Style file version May 30th, 2002

International Journal of Theoretical Physics, Vol. 43, No. 2, February 2004 (C© 2004)

Quantum Aspects of the Fundamental Dirac
Membrane Model

E. Stedile1

The classical relativistic Hamiltonian derived by Dirac for a charged membrane is
written in a linearized form and it is pointed out that the membrane has spin 1/2 under
the action of an external magnetic field. A spin-rotation coupling term is included into
the linearized Hamiltonian and the corresponding wave equation for the membrane is
written. It leads to quantized radial modes of oscillations and its first eigenvalues are
derived numerically. Asymptotic solutions are also considered.
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1. PRELIMINARY REVIEW

There has been recently a rapidly growing interest in relativistic membrane
theories. Also, there are several extended models for particles, where each one
attempts to describe an elementary particle based on an Hamiltonian formulation.
We recall that the basic idea of an extended electron in the context of a rela-
tivistic membrane was formulated by Dirac (1962), with the purpose to explain
the origin of the muon. Dirac has assumed a charged spherical membrane as a
manifold imbedded in the Minkowski space time, where the coulumbic repulsion
between elements of such a “closed oscillating bubble” is supposed to be balanced
by a type of surface tension. By means of a semiclassical quantization, he has
pointed out that, owing to radial oscillations, the first excited state has an energy
lower than 25% of the muon rest mass. Since the above treatment is not trustwor-
thy, such an approach lacks an accurate relativistic quantum formulation. Collins
and Tucker (1976) studied later the classical mechanics of uncharged relativistic
membranes, and afterwards Howe and Tucker (1977) considered a locally super
symmetric and reparametrization-invariant action for a spinning membrane. Such
a model is the membrane analog of the Neveu–Schwarz–Ramond formulation of a
spinning string. However, there are several unclear points in this latter membrane
framework.
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Before describing a quantum approach for a charged closed membrane, we
must face an important conceptual problem. Since the membrane has an uniform
distribution of charge on its surface, its Lagrangian may be interpreted as providing
repulsive forces at any instant between the elements of the membrane properly,
which are balanced by a surface tension. However, if the membrane rotates about
an arbitrary axis, owing to the influence of an external magnetic field, then points
of its instantaneous axis of rotation experience no centrifugal reaction (Collins and
Tucker, 1976). Therefore, we expect that the membrane should oscillate about the
rotation axis and then under quantization such oscillations might have a ground
state, defined at the equilibrium configuration of the membrane. An asymptotic
distribution of mass spectrum for sphere-like membranes immersed in a Minkowski
space-time has been studied by Ho (1995), and the spectrum of the Dirac membrane
model has been derived by means of a semiclassical quantization, in agreement
with the previous results obtained by Dirac (1962).

A covariant formulation for a moving charged membrane in an arbitrary
dimension and coupled to an electromagnetic field has been studied by Barut and
Pavsic (1993), where in a particular case a new formulation of Dirac’s model of the
electron as a charged spherical shell with internal oscillations and finite self-energy
was obtained. Afterwards the same authors (Barut and Pavsic 1994) pointed out
that the Dirac membrane approach provides a stable electron model with finite
self-energy, whose stability is owing to the surface tension of the membrane. The
stability of isotropic spherical rotating membranes has been studied recently by
Axenideset al. (2001), with a generalization to anisotropic ellipsoidal membranes,
where it was pointed out that ellipsoidal rotating membranes generally decay into
finger-like configurations.

This paper is devoted to the study of a charged membrane under the action
of an external magnetic field, within a relativistic quantum framework. First, we
linearize the Hamiltonian of the Dirac free membrane and then study its spin
when a membrane is immersed in a magnetic field. Afterwards we include into
the linearized Hamiltonian operator an interaction term, which contains a spin-
rotation coupling. Finally, some eigenvalues of the corresponding wave equation
are derived numerically.

2. THE HAMILTONIAN OPERATOR

Let us start from the classical relativistic Hamiltonian derived by Dirac (1962)
for a charged spherical membrane in the absence of external fields

H =
√

p2
r + µ2(r )+ V(r ), (1)

wherepr is the radial momentum,µ(r ) = γ r 2/4a3, V(r ) = γ /2r is a coulumbic
self-interaction potential anda is the electron classical radius. Here we adopt a
system of units whereh = c = 1 andγ = e2 = 1/137 is the fine structure constant.
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The classical relativistic Hamiltonian (1) for a free membrane has as kinetic
term the positive square root ofp2

r + µ2, and therefore ifpr is replaced by−i ∂/∂r
and the above kinetic term is substituted into the Schrodinger equation, the resulting
wave equation is unsymmetrical with respect to space and time derivatives, and
hence it is not relativistic. For that reason we have to modify the Hamiltonian (1)
in such a way as to make it linear as an operator in space derivatives. We thus
extend the Dirac method of linearization, searching for the linearized Hamiltonian
in the standard fromH = T + V(r ), whereT = +√p2

r + µ2. In this procedure
we take into account the Hermitian matrices

α =
(

0 σ
σ 0

)
and β =

(
I 0
0 −I

)
,

whereσ are the Pauli matrices andI is the identity matrix. We choose to writeT
in the matrix form

T = α · (pr + iq)+ βµ, (2)

where the momentumpr is modified according to the gauge transformationpr →
pr + iq, andq is a real radial vector, whose component is an arbitrary function of
r . With the help of Eq. (2) we find

T†T = (p2
r + µ2+ q2

)
I + i [(α · pr )(α · q)− (α · q)(α · pr )]

+ (α · pr )βµ+ βµ(α · pr )+ i [βµ(α · q)− (α · q)βµ]. (3)

Assuming thatq commutes withµ(r ) and since the linearization we search
for requires thatT2 = I (p2

r + µ2), we are led to a system of equations in spherical
coordinates

∇ · q + q2 = 0, σ · (∇rµ)+ 2µ(σ · q) = 0, (4)

whose solution isq = −er /r . Henceforth, the Hamiltonian (1) is transformed into
an operator in the linearized form

H = α ·
[

pr − i
er

r

]
+ βµ+ I V , (5)

where the termα · [ pr − ier /r ] is an Hermitian operator (Schiff, 1968), and there-
fore the Hamiltonian (5) is also Hermitian.

We recall that as stated in Dirac’s original paper (Dirac, 1962), the ground state
of the charged spherical membrane is obtained from the classical Hamiltonian (1),
at the equilibrium configuration wherepr = 0 andr = a. This yields the classical
energyε0 = 3γ /4a, which is the electron rest energy. The same result is also
obtained from the Hamiltonian (5), sincepr = 0 leads toq = 0, according to
Eq. (4).
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3. SPIN OF THE MEMBRANE

With the purpose to study a relativistic quantum framework for the Dirac
membrane, let us now assume that it is spinning about an arbitrary axis with angular
momentumÄ, owing to the influence of an external magnetic field. However,
under radial oscillations and rotation, the membrane poles on the instantaneous
axis of rotation experience no centrifugal reaction. As a consequence, the original
spherical shell is deformed into a triaxial ellipsoidal shell with sharp-pointed poles.
Once the Hamiltonian (5) is linear in the radial derivative, we can insert the term
α · (pθeθ + pφeφ) into its kinetic part, and then we can write

H = α · P + βµ+ I V , (6)

where P = p− ier /r and p = pr er + pθeθ + pφeφ in a spherical left-handed
basis (er , eφ , eθ ).

For simplicity, let us assume that the membrane is spinning around theZ-axis
and that it is instantaneously without translational motion. We point out below that
Ä is not a constant of the motion. For that, we calculate its time rate of change in the
Heisenberg picture in Cartesian coordinates. First, we notice that the commutation
rules [Ä j , Pk] = [Ä j , pk] = i ε jk` p` and [Ä j , µ(r )] = [Ä j , V(r )] = 0, ( j , k, ` =
1, 2, 3) hold true, becauseµ(r ) and V(r ) are spherically symmetric functions.
SinceÄx = Äy = 0, hence for theÄz component we find

[Äz, H ] = [Äz, px]αx + [Äz, py]αy = i (αx py − αy px). (7)

Now, let us take into account the Hermitian matrix

6 =
(
σ 0
0 σ

)
,

which satisfies the commutation rules [6 j , αk]= 2i ε jk` α`, [6 j , β]= [6 j , µ(r )]=
[6 j , V(r )] = 0. If we evaluate the time rate of change of6z we obtain

[6z, H ] = [6z, αx] px + [6z, αy] py = 2i (αy px = αx py). (8)

Therefore, we conclude from Eqs. (7) and (8) that we can define the quantity

Jz = IÄz+ 1

2
6z = Äz+ Sz, (9)

in such a way thatdJz/dt = 0, because it commutes with the Hamiltonian operator
of the membrane and so it is a constant of the motion. Moreover, the operatorSz

in Eq. (9) is

Sz = 1

2
6z = 1

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , (10)
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and since the eigenvalues of an operator represented by a diagonal matrix are the
same values of its diagonal elements, then the eigenvalues ofSz are±1/2. From
the above results, we conclude that it is apparent that the same conclusions hold
for the componentsJx andJ y. Hence, we can define the total angular momentum
operator of the membrane byJ = Ä+ (1/2)6 = Ä+ S, where S is the spin
angular momentum operator. The above result is in agreement with the fact that
spin 1/2 requires a nontrivial homotopy under 2π rotation, which a spherical
membrane lacks (Hu, 1959). Notice that the trivial homotopy is broken owing to
the existence of sharp-pointed poles of the ellipsoidal shell.

4. THE WAVE EQUATION

Once the charged membrane is spinning under the influence of an external
magnetic field, then the interaction between its spin and the external field should be
included into its Hamiltonian operator. Such an interaction leads to a spin-rotation
coupling, which can be represented by an Hamiltonian operatorHint ≈ 2(Ä · S) =
J2−Ä2− S2, whereJ2 = j ( j + 1) with j = 1/2, 3/2, . . . ,Ä2 = `(`+ 1), ` =
0, 1, 2,. . . and S2 = 3/4. Lets us choose the casej = 1/2 and let us derive the
corresponding wave equation. With these assumptions and making analogy to the
relativistic case of an electron in an external magnetic field (Davydov, 1965), and
also the case of a closed charged shell spinning in an uniform magnetic field with
a given angular frequency, we choose to write with the help of Eq. (6)

H = α · P + βµ+ I V
2πγ

a
βΩ2, (11)

where the latter term in the above equation is Hermitian.
Let us now consider the wave equation of the membrane as an eigenvalue

equation for the wave functionΨ(r, θ , t) = Ψ(r, θ , φ) exp(−i Et) in the matrix
form

HΨ(r, θ , φ, t) = E9(r, θ , φ, t), (12)

whereE are the eigenvalues ofH and the eigenstates of the membrane result from
solving the above differential equation assuming the Hamiltonian operator (11).
In a 2× 2 representation

Ψ(r, θ , φ) =
(
ϕ(r, θ , φ)

χ (r, θ , φ)

)
,

we find from Eqs. (11) and (12) the pair of first order equations

(σ · P)χ +
[
µ+ V − E − 2πγ

a
Ä2

]
ϕ = 0, (13)
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(σ · P)ϕ +
[

V − E − µ+ 2πγ

a
Ä2

]
χ = 0, (14)

and therefore, states with well-defined values of both the radial coordinate and
momentum of the membrane are described by the system of Eqs. (13) and (14).

Let us multiply on the right the Hermitian conjugate of Eq. (13) by [V −
E − µ+ (2πγ/a)Ä2], and let us consider the Hermitian conjugate of Eq. (14).
Assuming the operator identities [er /r ] · p+ p · [er /r ] = −i∇(er /r )+ 2(er /r ) ·
p and∇ × (er /r ) = 0, we find a second order iterated equation

−
[

p2+ 2

r

∂

∂r

]
ϕ +

[
E2− 2V E+ V2− µ2+ 4πγµ

a
Ä2− 4π2γ 2

a2
Ä4

]
ϕ = 0.

(15)

Let us write now the spatial part of the wave function in the separable form
ϕ(r, θ , φ) = R(r )F(θ )G(φ) and let us take into account that−p2 = ∇2 = ∇2

r −
Ä2/r 2, where∇2

r = (1/r 2) ∂/∂r (r 2∂/∂r ) is the radial part of the Laplace operator.
Finally, let us consider the dimensionless quantitiesX = r/a andε = aE, and let
us make the transformationR(r ) = Y(X). With the above assumptions we obtain
from Eq. (15)

d2Y

dX2 +
[
ε2− γ ε

X
+ γ

2− 4`(`+ 1)

4X2
− γ

2

16
X4+ πγ 2`(`+ 1)X2

− 4π2γ 2`2(`+ 1)2
]

Y = 0. (16)

The above equation is the wave equation of an anharmonic oscillator with
perturbative terms. The third term between brackets is a “centrifugal potential”
that defines a “centrifugal barrier,” which does not allow the membrane to collapse
to a point and the fourth term is a quartic nonharmonic term; the fifth term between
brackets is a harmonic term and the latter one is due to the spin-rotation coupling.
Therefore, the insertion of the interaction Hamiltonian according to Eq. (11) gives
rise to a harmonic term and also to a spin-rotation coupling term in the wave
equation, in analogy as it happens in the so-called Dirac oscillator (Moshinsky
and Szczepaniak, 1989). Otherwise, we recall that at the equilibrium radiusr = a
(i.e., X = 1), the radial momentum of the membrane vanishes, i.e.Y′(X = 1)= 0
and thereforeY′′(X = 1)= 0. Moreover, if we assumè= 0, we find from Eq.
(16) the solutionE0 = 3γ /4a, which is the electron rest energy, in agreement to
the classical result.

The eigenvaluesε of Eq. (16) are here derived by means of a numerical
technique, where we assume the cases` = 0 and` = 1. We employ the Runge–
Kutta method imposing the boundary conditionY′(0) as an arbitrary value, be-
cause the scaling procedure used in the derivation of Eq. (16) makes its numerical
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solutions independent from the choice of the first derivative ofY(X) at the ori-
gin (Presset al., 1992). We start from the boundary conditionsY(0)= 0 and
Y′(0)= N, where N denotes an arbitrary value. Here our problem is reduced
to find out Y′(X) = Y(X) = 0 for several values ofE . This procedure is simi-
lar to the usual one accounted for in the numerical solutions of the wave equa-
tion of a three-dimensional isotropic harmonic oscillator endowed with a cen-
trifugal potential (Giordano 1997). Henceforth, we are tempted to shoot many
values forE in Eq. (16) until we obtain numerically the desired asymptotic be-
haviors of bothY(X) andY′(X). The Fortran program we have employed gives
numerically the eigenfunctionsY′n(X) in a normalized form in terms of the cor-
responding eigenvalues of Eq. (16) with reasonable accuracy. In Figs. 1(a)–(h)
we show the plots of the first eigenfunctionsYn(X) of the excited states in terms
of the corresponding eigenvaluesE (`)

n of Eq. (16). If we now assume that the
ground state energy of the charged membrane is the electron rest energy, we find
E0 = aE0 = 3γ /4= 0.00547, and since the energy level ofnth order is given by
E (`)

n = aE(`)
n , we obtain withE0 = 0.5110 MeV,

E(`)
n = 93.4186E (`)

n (MeV). (17)

In Table I, it is shown the eigenvalues of Eq. (16) and the corresponding excited
energies as multiple values of the ground state energy, for` = 0 and` = 1.

Let us now evaluate the behavior of Eq. (16) for very large values ofE . Since
in this case the numerical solution is not trustworthy, owing to the great oscillatory
behavior of the wave function, we take Eq. (16) in the asymptotic form

d2Y
d X2
+ E2Y = 0, (18)

and we assume the boundary conditionsY(0)= 0 andY(X) = 0 for large values
of X. We thus obtain

Y(X) = I Asin(EX), (19)

where A is a normalization constant, andE (h)
m = mπ , (m= 1, 2, 3,. . .) are the

corresponding eigenvalues of high-order excited states. The first eight high-order
excited states are shown in Table II.

Concluding this section let us consider the mass spectrum in the Dirac mem-
brane model, derived by means of the Bohr–Sommerfeld quantization rule Ho
(1995)

m= me

3

(
4

e2

)2/3
[

nπ∫ 1
0

√
1− u4 du

]2/3

, n = 1, 2, 3,. . . (20)
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Fig. 1. (a–h) First eigenfunctions of the excited low-order energy
levels of a charged membrane in an external magnetic field, in
terms of the corresponding eigenvaluesE (0)

n (dashed line) and
E (1)

n (solid line).
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Fig. 1 Continued.
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Fig. 1 Continued.
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Table I. First Low-Order Eigenvalues of the Excited States of a Charged
Membrane Under the Influence of an External Magnetic Field, and the
Corresponding Energies According to Eqs. (16) and (17), for the Case

j = 1/2, with ` = 0 and` = 1

n E (0)
n E (1)

n E(0)
n (MeV) E(1)

n (MeV)

1 0.2388325 0.2870914 22.3114 26.8196
2 0.4176365 0.4519193 39.0150 42.2176
3 0.5637745 0.5894486 52.6670 55.0654
4 0.6929367 0.7127682 64.7331 66.5858
5 0.8110007 0.8265460 75.7625 77.2147
6 0.9210154 0.9332315 86.0399 87.1811
7 1.0248086 1.0343377 95.7361 96.6263
8 1.1235862 1.1308813 104.9638 105.6453

whereme = 0.5110 MeV is the electron rest mass and∫ 1

0

√
1− u4 du= 0(1/4)0(3/2)

40(7/4)
= 087401918. (21)

In this case the first eight excited energy levels are given in Table III, and we
see that the mass spectrum predicted by Eq. (20) is also rich, whose values are
close to those shown in Table I. By comparing Tables I and III we see that the first
excited state (n = 1) turns out to bem≈ 53me, which is about a quarter of the
observed muon rest mass. Such a result has been already derived by Dirac (1962),
pointing out to his disappointment that in the membrane model the muon is not the
first excited state of the electron. The next step should be to develop an accurate
formulation to determine the lifetime of each excited state of the whole spectrum.
This is a subject for future investigation.

Table II. Mass Spectrum of the First
Eight High-Order Excited Levels of the
Dirac Membrane Model, According to the

Asymptotic Approximation

m (level number) Mass (MeV)

1 293.48
2 586.96
3 880.45
4 1173.93
5 1467.41
6 1760.89
7 2054.38
8 2347.86
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Table III. Mass Spectrum of the First Eight Excited
Levels of the Dirac Membrane Model, According

to the Bohr–Sommerfeld Quantization Rule

n (level number) Mass (MeV)

1 26.7653313
2 42.4873150
3 55.6741326
4 67.4444086
5 78.2623034
6 88.3771765
7 97.942529
8 107.0613252

5. CONCLUDING REMARKS

We have considered in this paper a charged spinning membrane in an external
magnetic field within a Dirac formulation, taking into account a spin-rotation
coupling term. According to this approach the membrane has quantized radial
modes of oscillations that yield a discrete mass–energy spectrum. This result can
help us to a deeper understanding of the charged membrane model in a quantum
framework. We have also elucidated to a good accuracy the first low-order levels of
the energy spectrum for the excited states of the charged membrane, forj = 1/2,
with ` = 0 and` = 1, pointing out the nonlinear behavior of this spectrum as
a reflection of the essentially nonharmonic nature of the classical motion of the
membrane. Moreover, according to Tables I and III, we see that two consecutive
energy levels of the membrane become closer with the increasing level numbern.

Otherwise, it is reasonable to expect that the energy enclosed by a charged
spinning membrane, which is supposed to picture an extended charged lepton,
may contribute to its whole action. Furthermore, with a membrane approach as a
basis for a relativistic quantum theory of extended massive leptons, we expect that
several important questions can be elucidated. We hope the approach discussed
here will provide a basis for the development of a more general theory.
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